Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Plant Physiol ; 283: 153967, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2286120

ABSTRACT

Fucoidans are polysaccharides that consist predominantly of sulfated L-fucoses, from which, fucoidan oligosaccharides (FOSs) are prepared through different methods. Fucoidan has versatile physiological activities, like antiviral functions against SARS CoV-2 and bioactivitiy in enhancing immune responses. Although fucoidan or FOS has been widely used in mammals as functional foods and new drugs, its application in plants is still very limited. Moreover, whether fucoidan or its derived hydrolytic products can trigger immune responses in plants remained unknown. In this work, we demonstrate that the fucoidan enzymatic hydrolysate (FEH) prepared from Sargassum hemiphyllum triggers various immune responses, such as ROS production, MAPK activation, gene expression reprogramming, callose deposition, stomatal closure, and plant resistance to the bacterial strain Pseudomonas syringae pv. tomato (Pst) DC3000. Notably, FEH did not induce Arabidopsis root growth inhibition at the concentration used for triggering other immune responses. Our work suggests that EHF can potentially be used as a non-microbial elicitor in agricultural practices to protect plants from pathogen infection.


Subject(s)
Arabidopsis Proteins , Arabidopsis , COVID-19 , Sargassum , Sargassum/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Pseudomonas syringae/physiology , Plant Diseases/microbiology , Gene Expression Regulation, Plant
2.
J Cell Sci ; 134(19)2021 10 01.
Article in English | MEDLINE | ID: covidwho-1484823

ABSTRACT

Molecular chaperones play an important role during the response to different stresses. Since plants are sessile organisms, they need to be able to adapt quickly to different conditions. To do so, plants possess a complex chaperone machinery, composed of HSP70, HSP90, J proteins and other factors. In this study we characterized DJC31 (also known as TPR16) and DJC62 (also known as TPR15) of Arabidopsis thaliana, two J proteins that additionally carry clamp-type tetratricopeptide repeat domains. Using cell fractionation and split GFP, we could show that both proteins are attached to the cytosolic side of the endoplasmic reticulum membrane. Moreover, an interaction with cytosolic HSP70.1 and HSP90.2 could be shown using bimolecular fluorescence complementation. Knockout of both DJC31 and DJC62 caused severe defects in growth and development, which affected almost all organs. Furthermore, it could be shown that the double mutant is more sensitive to osmotic stress and treatment with abscisic acid, but surprisingly exhibited enhanced tolerance to drought. Taken together, these findings indicate that DJC31 and DJC62 might act as important regulators of chaperone-dependent signaling pathways involved in plant development and stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , HSP90 Heat-Shock Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological
3.
Development ; 147(13)2020 07 06.
Article in English | MEDLINE | ID: covidwho-737587

ABSTRACT

The veins are the vascular networks of plant leaves, functioning as channels for transport of signals and nutrients. A new paper in Development investigates how the spatial regulation of auxin transport contributes to vein patterning in Arabidopsis We caught up with first author Priyanka Govindaraju and her supervisor Enrico Scarpella, Associate Professor at the Department of Biological Sciences, University of Alberta in Edmonton, Canada, to find out more about the work.


Subject(s)
Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport/physiology , History, 20th Century , History, 21st Century , Humans , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL